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ABSTRACT 
A finite volume scheme is developed to solve the phonon 

Boltzmann transport equation in an energy form accounting for 
phonon dispersion and polarization. The physical space and the 
first Brillouin zone are discretized into finite volumes and the 
phonon BTE is integrated over them. Second-order accurate 
differencing schemes are used for the discretization. The 
scattering term employs a rigorous implementation of phonon 
momentum and energy conservation laws in determining the 
rate of normal and Umklapp processes. The method is applied 
to a variety of bulk silicon and silicon thin-film conduction 
problems and shown to perform satisfactorily. 

NOMENCLATURE 
a Lattice constant, m 
A Amplitude of the wave, m 
b Reciprocal wave vector, 1/m 
CP Propagating mode specific heat 
D Density of states 
e" Phonon energy density, J/m3-sr 
G Number of atoms per unit volume 
K Phonon wave vector, 1/m 
k    Thermal conductivity, W/mK 
kB Boltzmann’s constant, J/K 
M Atomic mass, kg 
N Phonon distribution function 
r Position vector, m 
t  Time, s 
T Temperature, K 
v Speed of sound, m/s 
vg Group velocity of phonons, m/s 
ħ Reduced Plank’s constant, Js 
η Number of polarizations 
Ω Solid angle, sr 
τ Relaxation time, s 
ω Angular frequency of phonons, 1/s 
γ Gruneisen parameter 
ρ Density, kg/m3

θ Polar angle, rad 
φ Azimuthal angle, rad 

INTRODUCTION 
In recent years, the aggressive scaling trends of modern 

microelectronic devices have resulted in increased power 
dissipation and thermal failures. Accordingly, there has been 
increasing interest in modeling sub-micron thermal transport in 
transistors, and therefore in semi-conductors and dielectrics. 
When the mean free path of phonons is much longer than the 
domain length scale, Fourier conduction no longer obtains. The 
phonon Boltzmann transport equation (BTE) has been used to 
make thermal predictions at the sub-micron scale [1-7]. 
However, nearly all implementations presented thus far make 
substantial simplifications, both to the polarization and 
dispersion behavior of phonons, and to the representation of 
phonon-phonon scattering. It is unclear what the influence of 
these approximations is when phonon confinement effects are 
important or when phonon groups are strongly out of 
equilibrium with each other, as in modern ultra-scaled 
MOSFETs. 

Among the earliest numerical simulations of the phonon 
BTE were those published by Majumdar and co-workers [1][2] 
who employed a discrete ordinates-technique. Frequency- 
dependence was considered but the scattering terms employed a 
relaxation time approximation with the frequency-dependent 
relaxation times being derived to fit bulk thermal conductivity. 
Ju et al. [3][4] and Sverdrup [5] employed a two-fluid BTE 
model for heat conduction. The two-fluid model [8] divides 
phonons into reservoir and propagation modes. The reservoir 
mode phonons are regarded as capacitive because of their small 
group velocities, while the propagation mode phonons account 
for the entire heat transport. The propagation mode employs a 
single phonon group velocity and a single effective relaxation 
time is used for energy exchange between reservoir and 
propagating modes. Under this model, the bulk thermal 
conductivity is given in terms of the propagating mode 

21
3 P P Pk C v τ=  (1) 

The relaxation time τP in [5] is extracted from the bulk 
thermal conductivity using the heat capacity and group velocity 
of longitudinal acoustic phonons, which are considered to be in 
the propagation mode. In contrast, the transverse acoustic and 
optical phonons are lumped together in the reservoir mode, and 
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do not contribute to the effective relaxation time. If τP is chosen 
to satisfy bulk thermal conductivity, depending on the choice of 
the propagating mode velocity, the scattering time for energy 
transfer between the reservoir and the propagation modes may 
become very long, and unrealistically high device temperatures 
would be predicted in typical MOSFETs [6]. 

The neglect of phonon dispersion effects has significant 
consequences for the modeling of thermal transport in emerging 
MOSFETs. It has been pointed out [9] that electron-phonon 
scattering in MOSFETs transfers energy from electrons 
preferentially to optical phonons if electron energies are above 
60 meV; this energy is then transported to acoustic phonons by 
scattering between polarizations, and is eventually dissipated to 
the environment by acoustic phonons. The degree of self- 
heating in MOSFETs depends critically on which phonon 
groups receive the energy due to electron-phonon scattering, 
and how fast this energy can be transported to the environment. 
Thus, inclusion of phonon dispersion and polarization is critical 
for capturing the granularity of energy scattering and transport. 

To address this issue, Narumanchi et al. [6] proposed a 
non-gray model, in which phonon dispersion and interactions 
among longitudinal and transverse acoustic as well as with 
optical phonons, are accounted for. Expressions for three- 
phonon interaction times from [10-12], derived from 
perturbation theory, are used. This non-gray model better 
captures the underlying physics in the phonon energy transport 
and has produced good agreements with experimental data in 
several modeling studies [6][7]. For MOSFET applications, it is 
capable of capturing the spectrum of relaxation times governing 
energy exchanges between different phonon groups. However, 
the scattering terms are approximations modeled on the 
relaxation time approximation. Furthermore the dispersion 
curves for silicon in [1,0,0] direction are assumed to hold in all 
directions. While this approximation is reasonable for bulk 
silicon, it is not valid for ultra-scaled devices where only 
in-plane wave vectors have an appreciable density of states. 
Another issue is phonon energy and momentum conservation 
rules are not directly satisfied by this model. They are indirectly 
implied by the relaxation times used, but there is no direct 
guarantee that only phonons satisfying conservation rules 
interact. Finally, this model takes its relaxation time 
expressions from Han and Klemens [12], where a number of 
approximations about phonon-phonon interactions have been 
made, many of which are strictly only correct for low 
temperatures. 

Monte Carlo methods have been extensively used in the 
thermal radiation literature [13]. They also form the basis of 
electron transport calculations in transistors [14]. Recently, 
Mazumder and Majumdar [15] has presented a Monte Carlo 
solution technique for the phonon BTE accounting for phonon 
dispersion and polarization. In this technique, phonon samples 
are first drawn from the six individual stochastic spaces, 
including the three wave vector components and the three 
position vector components. The samples are then allowed to 
drift and scatter in time as described by the BTE, and their 
statistics is collected at various points in time and space, and 

processed to extract the necessary information. Since the 
stochastic space is so large, a large number of samples have to 
be considered in order to obtain sample-independent results. 
Another important issue is that while relatively simple Monte 
Carlo schemes can be written for photons and electrons, which 
are constant in number, the scheme can become very 
complicated when the number of particles changes, as in the 
case of phonons. Three-phonon interactions may spawn new 
phonons or absorb them, and these changes in number must be 
tracked through appropriate data structures. Furthermore, the 
approach in [15] finds phonon relaxation times through a curve 
fit of bulk thermal conductivity, and does not explicitly enforce 
phonon conservation rules. These complications have, to our 
knowledge, never been addressed in the phonon transport using 
Monte Carlo schemes thus far. 

The objective of the present work is to substantially 
improve the modeling of sub-micron heat transfer by 
considering a rigorous implementation of scattering terms. The 
energy form of the phonon BTE is used. A general 
computational procedure for computing three-phonon scattering 
rates is developed, fully accounting for phonon energy and 
momentum conservation rules. A finite volume numerical 
method is developed for the phonon energy density which 
guarantees exact satisfaction of phonon energy conservation, 
and which satisfies phonon number and momentum 
conservation on sufficiently fine discretizations. The scheme is 
used to compute bulk and thin layer thermal conductivity for 
silicon and reasonable matches with experimental results are 
demonstrated. The model presented here paves the way for 
computing thermal transport in confined geometries with 
general anisotropic dispersion curves. 

THEORY 

Phonon Boltzmann Transport Equation 
The phonon Boltzmann transport equation (BTE) can be 

written as [16]

g
scatter

N NN
t t

∂ ∂⎡ ⎤+ ⋅∇ = ⎢ ⎥∂ ∂⎣ ⎦
v  (2) 

Here the phonon number distribution function N(r,K,t) is a 
function of seven independent variables, time, position and the 
three components of the wave vector. The scattering term on 
the RHS includes phonon-phonon, phonon-impurity and 
phonon-isotope scattering, as well as scattering on other 
carriers, grain boundaries, imperfections, and sample 
boundaries. 

Three-phonon interactions play a critical role in 
determining thermal conductivity. There are two types of 
three-phonon interactions [16]: normal (N) processes, affecting 
energy transport indirectly by altering the distribution of 
phonons; and Umklapp (U) processes, posing resistance to 
energy transport directly by flipping over the direction of the 
wave vector. The rules governing N and U processes are energy 
(frequency) and momentum (wave vector) conservation, 
expressed as 

' "ω ω ω+ =  (Normal and Umklapp) (3) 
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'+ =K K K " (Normal)  
' "+ = +K K K b  (Umklapp)  (4) 

where b is reciprocal wave vector associated to each given 
lattice structure. For silicon, there are 14 different b’s in the 
first Brillouin zone [17]. 

The non-equilibrium phonon distribution function N in Eq. 
(2) can usually be written as the linear combination of its 
equilibrium distribution N0 and a small deviation n from 
equilibrium 

0N N n= +  (5) 
where N0 is governed by the Planck or Bose-Einstein 
distribution [15]

0
1

exp( / ) 1B

N
k Tω

=
−h

 (6) 

Assuming an exponential law for the decay process 
responding to a perturbation, the relaxation time form of the 
scattering expression can be derived [10]

0

scatter

N NN n
t τ τ

−∂⎡ ⎤ = =⎢ ⎥∂⎣ ⎦
−  (7) 

This approximation linearizes the scattering term in the BTE 
and implies that whenever a system is not in equilibrium, the 
scattering term will restore the system to equilibrium through 
an exponential decay N-N0=exp(-t/τ). The relaxation time 
approximation essentially limits energy exchanges to a “bath” 
at N0 and does not permit direct energy transfers between 
different groups of phonons. 

Energy Form of the BTE 
In present work, the energy form of the phonon BTE is 

preferred since thermal properties and energy transport in 
silicon are of interest. We define the average phonon energy 
density as 

( , , ) ( , , ) ( ) ( )e" t N t D d D dω ω ω ω ω= ∫r K r K h ∫  (8) 

Hence the phonon BTE becomes 
( , , ) ( , , )( ) ( , , )g

scatter

e" t e" te" t
t

∂ ∂⎡ ⎤+ ⋅∇ = ⎢ ⎥∂ ⎣ ⎦
r K r Kv K r K

t∂
  (9) 

Here vg(K) is the phonon group velocity corresponding to the 
wave vector K. It also varies with the polarization branch, but 
we do not include this in the notation for simplicity. 

Scattering Terms 

Three-Phonon Scattering 
Based on perturbation theory, Klemens [10][11] derived an 

expression for scattering rates due to three-phonon interactions 

[

2

3
', "

2 ( , ', ") ( ) ( )
' "

( 1)( ' 1) " '( " 1)
scatter

N c
t M

N N N NN N

π δ ω δ
ωω ω

∂⎡ ⎤ = Δ⎢ ⎥∂⎣ ⎦
× + + − +

∑
K K

K K K Kh

]

Δ  (10) 

Here the two delta functions make Eq. (10) become zero unless 
both energy and momentum conservation rules, Eq. (3) and (4), 
are satisfied. The coefficient c(K,K’,K”) may be calculated in 
terms of  anharmonic terms of the potential energy. Instead, 
Klemens [10] estimated the magnitude of c(K,K’,K”) in a 

concise form that has been used in several numerical models 
and good results have been reported [6][12]. Here, 

2( , ', ") ' "
3

i Mc
G v

γ ωω ω= −K K K  (11) 

G is the number of atoms per unit volume and v is the speed of 
sound. We employ this form for simplicity; the procedures 
required for solving the BTE with alternate forms do not 
change in the essence. 

The terms within the square brackets in Eq. (10) denote the 
creation/annihilation of phonons in each interaction process. 
For instance, the term (N+1)(N’+1)N” represents two phonons 
with distribution functions N and N’ which are annihilated to 
create a third phonon N”. Hence the whole terms represent the 
net rate of creation or annihilation of phonon N. Expanding Eq. 
(10) using the relations in Eq. (5) and (6) and enforcing energy 
conservation, Eq. (3), it is possible to show that 
[ ]

[ ]0 0 0 0 0 0

( 1)( ' 1) " '( " 1) ( " ' " ')

( ' ") '( ") "( ' 1)

N N N NN N nn n n nn

n N N n N N n N N

+ + − + = + − +

− − − − + + +
 (12) 

When n’= n”=0 and higher order nonlinear terms nn” etc. are 
omitted, Eq. (10) recovers the relaxation time approximation. 

The summation over all interacting modes K’ in Eq. (10) 
can be changed into an integration over the surface S’ on which 
K’ is constant, followed by an integration over the interval ΔK’ 
where the direction of K’ is constant [10]

3 3 ' '

'' '
(2 ) (2 ) K K

g

V Vd dS
v

dωη η
π π

= =∑ ∫ ∫ ∫
K'

K  (13) 

By combining Eq. (10), (11) and (13), and exploiting the 
property of the delta function 

( ') ( ') ' ( )x x f x dx f xδ − =∫  (14) 

the scattering rate for three-phonon interactions becomes 

[ ]

2

2 2 '

1 ' " '
3 '

( 1)( ' 1) " '( " 1)

K
scatter g

N dS
t v v

N N N NN N

γη ωω ω
π ρ

∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦

× + + − +

∫
h

 (15) 

where ρ=GM/V is the density, η is the number of polarizations 
of phonon K’. 

Impurity Scattering 
 At low temperatures, for pure single crystals, it is 

necessary to consider isotope scattering. The isotope scattering 
rate is taken to be the same as that in Klemens [10]

2 21 ( ) ; [1 ( )]
6

i
i

iI

MVD f M
π ω ω

τ
= Γ Γ = −∑  (16) 

where Mi is the mass of the impurity atom, M the mass of the 
host atom, fi the fractional content of atoms of mass Mi, and the 
scattering parameter Г=2.64×10-4 for the three silicon isotopes 
considered. V (=a3/4) is the volume of a primitive cell. 

Boundary Scattering 
For the computation of bulk silicon thermal conductivity, 

boundary scattering is treated in the manner of Holland 
[18][19]
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1

B

v
LFτ

=  (17) 

where L is the cross-section size of the sample and F is a factor 
adjusted to fit experimental data. 

These additional scattering mechanisms are included by 
adding a term of the type 

0"

scatter

e e
t

"e
τ

∂⎡ ⎤ =⎢ ⎥∂⎣ ⎦
−  (18) 

When simulating phonon transport in thin films, boundary 
scattering is directly computed by resolving specular or diffuse 
scattering at the domain boundaries. 

Computation of Dispersion Curves 
Phonon dispersion relations are necessary to correctly 

model polarization and frequency-dependent behavior and to 
incorporate the effects of anisotropy in ultra-scaled devices. In 
present work, the model of Ghatak and Kothari [20], is used to 
calculate phonon dispersion in bulk silicon. 

The equation of motion of atom l in α direction can be 
written as [20]

'
( ) ( ')

l
Mu l F lα α=∑&&  (19) 

where M is the mass, u is the displacement, and F is the forces 
acting on atom l from all the other atoms l’. The force should be 
determined directly from interatomic potential, which is usually 
complicated as in crystal silicon. It is convenient to assume that 
only central and angular forces, proportional to central and 
angular displacements, exist between the nearest neighbors [20]. 
Once a solution of the displacements in the form [20]

( ) exp[ ( ( ))]u l A i t lα α ω= − − ⋅K r  (20) 
is substituted into Eq. (19), the secular determinant is derived 
from which the dispersion relations can be obtained 

2( ) 0Dαβ αβω δ− =K  (21) 

where δαβ=1 only if α=β. Dαβ is the dynamical matrix, which is 
a 6×6 matrix for bulk silicon and given as 

* * *

* * *

* * *

0 0
0 0
0 0

( )
0 0

0 0
0 0

A B C D
A C B E

A D E B
D

B C D A
C B E A
D E B A

αβ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

K
⎥  (22) 
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where Kx, Ky and Kz are three components of an arbitrary wave 
vector K, αc and αa are central and angular force constants 
which are determined by fitting to experimentally measured 
dispersion curves. 

 
Fig. 1. Phonon dispersion curves for bulk silicon for 
high symmetry directions. The thin lines are results 
obtained by present work; the thick lines are obtained 
by the bond charge model [21], while the solid circles 
are experimental data [22]. 

Dispersion curves obtained using [20] are compared with a 
more accurate bond charge model [21] and experimental data 
[22] as shown in Fig. 1. Dispersion curves for acoustic phonon 
branches computed using [20] show discrepancies with respect 
to experimental data, while for other branches, a good match is 
obtained. This discrepancy may be ascribed to the simple 
assumption made in [20] that only central and angular forces 
exist in bulk silicon. Nevertheless, this lattice dynamics model 
is still used because it is more convenient to use to compute 
dispersion for any arbitrary direction 

In present work, the dispersion curves in chosen discrete 
directions are pre-calculated and stored. Phonon properties such 
as group velocity, specific heat, and density of states are 
extracted from these directionally-dependent dispersion curves, 
and eventually incorporated into the proposed full scattering 
BTE model, as described below. 

NUMERICAL SOLUTION 

⎞
⎟
⎠

 (23) 
Finite Volume Method 

A finite volume method is developed to solve the BTE. The 
spatial domain is divided into control volumes of volume ΔV.  
A structured 2D mesh is shown here in Fig. 2 for simplicity, 
though unstructured implementations of the basic scheme have 

 4  



been published previously [23]
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Fig. 2. 2-D spatial domain showing the control volume 
around point P. 

The wave vector space consists of an angular space of 
extent 4π as well as a wave number space [0,Kmax], where Kmax 
depends on the direction of the wave vector K, and captures the 
non-spherical shape of the first Brillouin zone as shown in Fig. 
3. 

 
Fig. 3. First Brillouin zone for silicon, Γ-Χ denotes the 
[1,0,0] direction, Γ-Κ the [1,1,0] direction, and Γ-L the 
[1,1,1] direction. 

The angular space is divided into Nθ×Nφ control angles, 
each of extent ΔΩi. The wave number space is discretized into 
“bands” of extent ΔKj. Given a dispersion curve for the 
polarization under consideration, each band ΔKj. corresponds to 
a frequency band Δωj. We define the direction vector s as 

ˆˆ ˆsin sin sin cos cosi j kθ φ θ φ= + +s θ  (24) 
Here θ and φ is polar and azimuthal angle as shown in Fig. 4, 
respectively. 

y

z 
ŝ  

θ 

φ 

 
Fig. 4. Polar and azimuthal angles in the direction s. 

The wave vector is then given by K=Ks and the phonon 
velocity vector is given by vg=vgs. Therefore 

3 2

3( )
(2 ) (2 )
d K dKD dω ω
π π

Ω
= =∫ ∫ ∫ ∫

K
3

d  (25) 

The phonon energy associated with a solid angle ΔΩi and a 
band ΔKi is given by 

2
2

1
i j

ij K
j j i

e N
K K

ω
ΔΩ Δ

′′ K dKd= Ω
Δ ΔΩ ∫ ∫ h  (26) 

Here e”
ij,P is the band and angle-averaged phonon energy 

density at cell centroid P in the direction i and the frequency 
band j, and is the solution variable. 

For each discrete direction s, Eq. (9) is integrated over the 
solid angle ΔΩi, wave vector band ΔKj, control volume ΔVP 
around point P, and time step Δt to yield [23]

,1
, , ,( ) ij Pn P

ij P ij P f f ij ij f P
f scatter

eVe e J v e V
t t

−
′′∂⎡ ⎤Δ′′ ′′ ′′− + = ⎢ ⎥Δ ∂⎣ ⎦

∑ A Δ  (27) 

e”
ij,f is the average energy density at the face f of the control 

volume. A simple upwind approximation for e”
ij,f can be applied 

following Patankar [24]. Higher order reconstruction of the face 
value is also possible [25]. In the results presented here, the 
smart scheme [24] is used for spatial discretization. A fully 
implicit scheme is used in Eq. (27). Values at the current time 
level are un-superscripted in Eq. (27), in contrast to the values 
at the previous time level, which are superscripted with (n-1). 
The geometric factor Jf is defined as 

1 sinf
f

i f

J d d
θ φ

θ θ φ
Δ Δ

= ⋅
ΔΩ ∫ ∫

A
s

A
 (28) 

Scattering Term 
The relaxation time approximation is not used in present 

work. The scattering term is written in two parts. The first 
models elastic scattering processes, i.e., there is no change in 
the frequency or polarization of the phonon, and the second 
models three-phonon processes. The scattering term is given by 

( ) ( )0 0
, , , ,, ,

, , 3

j P ij P j P ij Pij P ij P

B ij I ijscatter phonon

e e e ee e
t tτ τ

−

′′ ′′− −′′ ′′∂ ∂⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

 (29) 

For simplicity, let us consider an interaction of the type 
' "+ <=>K K K  in which K, K’ and K” satisfy Eqs. (3) and (4). 

In discrete terms, this involves the interaction of control angle 
ΔΩi and the wave number band ΔKj with (ΔΩ’k, ΔK’

l) and 
(ΔΩ”m, ΔK”

n). The three-phonon scattering term for this 
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interaction may be written as 
2

2
2 2, 2

,

3
, , , , , ,

1 ' '
3 '

( 1)( 1) ( 1)

ij kl mn k lij P
g kl j j

phonon
ij P kl P mn P ij P kl P mn P

Ke v v K K
t

N N N N N N

γη ω ω ω
π ρ

−

⎛
′ ′′ ΔΩ′′ ⎜∂⎡ ⎤

= ⎜⎢ ⎥∂⎣ ⎦ ⎜ ′ ′′ ′ ′′⎡ + + − +⎣⎝

h

i

⎞
⎟

Δ ΔΩ⎟
⎟⎤⎦⎠

                                               (30) 
where Nij,P is the average phonon number density and is found 
from the energy density as 

, , /ij P ij P ijN e ω′′= h  (31) 

Here, ωij is the centroid value of ΔΩi and ΔKj. 
In writing Eq. (30), the integral over the surface dS’ in Eq. 

(13) has been approximated by the area of a spherical shell with 
radius of K’, projected by the solid angle ΔΩ’. Eq. (30) 
represents only the scattering rate for one single three-phonon 
interaction process associated with phonon K. The total 
scattering rate is evaluated by summing over all interacting 
phonons K’, as well as by considering interactions of the 
type . Though this discussion has used normal 
processes as an example, Eq. (30) also applies to Umklapp 
processes. 

'+ <=>K K K"

Computation of Scattering Interactions 
Eq. (30) has been written assuming that the wave vectors 

K, K’ and K” satisfy conservation rules, Eq. (3) and (4).  A 
critical part of the computation procedure is determining which 
phonon interactions satisfy these rules. A general computation 
procedure has been developed in [26] to find all the possible 
three-phonon interactions within the first Brillouin zone, with a 
rigorous enforcement of energy and momentum conservation 
laws. In this procedure, the first Brillouin zone is discretized 
into small volumes, each occupied by a group of phonons with 
the same frequency ω, wave vector K and the same 
polarization. Phonon dispersion relations in each discretized 
direction are computed based on lattice dynamics, and are used 
as a known function ω(K). For each phonon, a search process 
thorough all the phonons in the first Brillouin zone is 
conducted, and all the combinations satisfying conservations 
rules Eqs. (3) and (4) are recorded as possible three-phonon 
interactions, each with a scattering rate determined by Eq. (30). 
Hence a summation over all the interacting phonons K’ will 
gives the total scattering rate for a phonon K. 

Recovery of Temperature 
In present work, the lattice “temperature” associated with 

the total phonon energy is determined by solving the following 
equation during each iteration 

2 0 2

, ,
ij j j i ij j j i

i j i j

e K K e K K′′ Δ ΔΩ = Δ ΔΩ∑ ∑  (32) 

where eij
0 is the equilibrium phonon energy density associated 

to phonon solid angle ΔΩi and band ΔKj

0
2

1
exp( / ) 1i j

ij K
j j i B

e
K K k T

2K dKdω
ωΔΩ Δ

=
Δ ΔΩ −∫ ∫

h

h
Ω  (33) 

Boundary Conditions 
There are three types boundary conditions are admitted in 

the present model, as described below. 

Thermalizing Boundary 
These are boundaries at which the phonon energy 

incoming to the domain from the boundary can be assumed 
given. For phonons leaving the boundary from the domain, they 
are regarded as perfectly absorbing boundaries. Thus, the 
boundary condition is analogous to black boundaries with a 
given temperature in radiative transfer. For directions incoming 
to the domain from the domain boundary, the phonon energy 
density in a frequency band Δωj is given by 

0
ij ije e′′ =  (34) 

where e0
ij is defined in Eq. (33). 

Symmetrical Boundary 
These are boundaries at which the phonon energy in 

outgoing directions from the boundary is given by 
"( ) "( )re e=s s  (35) 

where 
2( )r = − ⋅s s s n n  (36) 

Here n is the unit vector normal to the boundary, and is 
outward-pointing from the domain. A symmetry boundary of 
this type is only possible if the alignment of the crystal 
structure with respect to the bounding surface preserves 
reflective symmetry. In this event, dispersion curves for the s 
and sr directions would be the same. 

Partially Specular/Partially Diffuse Boundary 
These are boundaries at which the phonon energy is 

reflected partially diffusely and partially specularly. Thus, the 
phonon energy in a direction s entering the domain is 
determined partially by the corresponding incoming specular 
direction sr and partially by the average over all incoming 
directions si 

( )"( ) "( ) (1 ) "( ) sin /
i

r i ie pe p e d d
θ φ

θ θ φ π
Δ Δ

= + − ∑ ∫ ∫
s

s s s s  (37) 

Here p is the specularity factor; p=0.0 indicates a 
completely diffuse boundary, and p=1.0 indicates a completely 
specular boundary. 

RESULTS 

Thermal Conductivity of Bulk Silicon 
The full scattering BTE model proposed in present work is 

first validated by computing the thermal conductivity of bulk 
silicon over a range of temperatures and comparing with 
experimental data provided in Holland [18][19]. This 
calculation, though ostensibly simple, constitutes a fundamental 
test of the scattering model and its implementation. A 
rectangular domain is considered where the length is chosen so 
that the lateral acoustic thickness is large enough to ensure that 
bulk thermal conductivity is independent of domain length. A 
small temperature difference is maintained between the left and 
right boundaries, while symmetry boundary conditions are used 
at the top and bottom boundaries. Boundary scattering is 
included using Eq. (17) with L=0.716 cm and F=0.8, as in 
[18][19]. The BTE is solved with a discretization of 30×3 
spatial cells, 4×4 directions in each octant, and 20 divisions in 
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each wave vector direction. The thermal conductivity is 
evaluated by computing phonon energy flux across the domain. 
The plot of the thermal conductivity of bulk silicon over a wide 
range of temperatures is shown in Fig. 5. 
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Fig. 5.Thermal conductivity of bulk silicon at different 
temperatures. Experimental data from Holland [19]

At very low temperatures (<15K), the thermal conductivity 
of bulk silicon is almost entirely determined by boundary 
scattering. Good matches with experimental data are obtained 
even without impurity and three-phonon scattering. This is 
consistent with our understanding that the number of phonons 
decreases exponentially with temperature through the Bose- 
Einstein distribution and three-phonon scattering would be 
“frozen out” due to the lack of sufficient numbers of phonons at 
low temperatures. 

At higher temperature (>50K), Umklapp processes play the 
major role in determining thermal conductivity. The match with 
experimental data for T>50K is good. This match is significant 
because no fitting with experimental data has been used to 
determine scattering rates, unlike previous studies [6][12].  
The only empirical parameter in the U-process scattering rate is 
the Gruneisen constant, which is held constant at γ=0.56, 
consistent with [12]. The match thus establishes the correctness 
of both the scattering rate expressions as well as the numerical 
procedure developed here.  

In the 20-50K range, N processes play a critical role in 
enabling U processes to occur. N processes themselves cannot 
create thermal resistance, and do not directly affect thermal 
conductivity. However, at low temperatures, there are not 
sufficient numbers of long K phonons, which are necessary for 
U processes to happen, consistent with Eq. (4). Short K 
phonons must interact in N processes to create long K phonons 
capable of participating in U processes [12]. 

Thermal Conductivity of Undoped Silicon Film 
The full scattering BTE model is next used to compute the 

in-plane thermal conductivity of undoped silicon thin films. 
Again, 30×3 spatial cells and 4×4×20 discretization in one 
octant in wave vector space are used. The top and bottom 
boundaries are set to be partially diffuse/specular. Various 

values of the specularity parameter p are tested to best fit the 
experimental data. 

Fig. 6. shows the thermal conductivity of silicon thin films 
at 300K with thicknesses ranging from 74-850 nm. The 
experimental data points are obtained from Ju and Goodson [4]  
and Asheghi et al [27][28] for comparison. At low temperatures, 
the plot indicates a better agreement when the specularity factor 
p is in the range 0.4-0.6. 

Fig. 7. shows the thermal conductivity of silicon thin films, 
with thickness in the range of 0.42-3.0 µm over a temperature 
range of 20-300K. The comparison is with experimental data 
from Asheghi et al [27][28]. The specularity factor p is set to be 
0.4, compared with the value 0.6 used by Mazumder and 
Majumdar [15]. This difference may be due to the difference in 
the scattering model used in the two calculations. 

 
Fig. 6. Thermal conductivity of silicon thin films at 
300K for films of different thicknesses. Experimental 
data from Ju and Goodson [4], and Asheghi et al 
[27][28]
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Fig. 7. Thermal conductivity of silicon thin films with 
p=0.4. Experimental data from Asheghi et al [27][28]

It should be pointed out that in present work, dispersion 
relations for bulk silicon are used in predicting thin film 
properties. Though phonon confinement effects have been the 
focus of much discussion recently [29], the films considered 
here are much larger than the dominant phonon wavelength at 
the temperatures of interest and confinement is not expected to 
play a role here. However, the present implementation is 
general enough to capture phonon confinement effects in very 
thin films provided that phase coherence effects are not 
significant and phonons can still be treated in a particle 
framework consistent with the Boltzmann transport equation. 

SUMMARY AND CONCLUSIONS 
A full scattering phonon BTE model has been developed 

based on the finite volume method. In present model, 
dispersion and polarization are fully accounted for, and 
scattering rates are determined by rigorous implementation of 
phonon conservation rules. The relaxation time approximation 
is discarded and the full scattering term is incorporated in the 
BTE. Anisotropy of silicon dispersion curves is also considered 
so that the realistic shape of the first Brillouin zone is well 
captured. The model is tested against experimental data for the 
thermal conductivity of bulk silicon and silicon thin films and a 
reasonable match with experiments is obtained. 

The present model substantially improves the modeling of 
sub-micron heat transfer in silicon, and allows us to answer 
fundamental questions about the nature of phonon transport in 
sub-micron geometries. The role of N and U processes as a 
function of temperature, the influence of phonon confinement 
on group velocity and three-phonon scattering rates, and in 

strongly non-equilibrium heat transfer, such as in micro- 
electronics, can be answered in the present framework. 
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