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Abstract 

Fatigue initiation and failure of various MEMS is of significant importance as they 

gain widespread acceptance in sensors and electronics.  This paper presents an approach 

for utilizing available experimental fatigue data to evaluate the fatigue lives of MEMS 

components.  The approach is based upon a discontinuous material representation and 

continuum damage mechanics principles.  The presented model utilizes experimental data 

measured over just a few millions of cycles to predict the fatigue life for more than a trillion 

cycles.  This is particularly critical for MEMS since measurements that last several 

hundreds of billions of cycles require many months or years to complete.  Furthermore, the 

proposed model captures the statistical distribution of material properties and geometrical 

randomness of the microstructure commonly observed in a wide variety of MEMS.  

Consequently, simulations that account for the variability in fatigue life can be readily 

performed even for fatigue lives that exceed a trillion cycles.  The discrete element model 

developed is applied to a dog-bone shaped tensile specimen to evaluate the influence of 

material heterogeneity and material flaws on fatigue crack initiation life and scatter.  The 

ability of the model to predict the fatigue life of different types of MEMS devices and 

loading conditions is also demonstrated. 
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Introduction 

The applications of Micro Electro Mechanical Systems (MEMS) are continuously 

growing.  The successful development of a device requires both the experimental determination 

of the relevant material properties as well as modeling techniques that can capture heterogeneous 

effects caused by the material microstructure.  In many applications such as accelerometers [1], 

angular rate sensors [2] and RF MEMS switches and varactors [3] components are subjected to 

cyclically varying loads and are expected to withstand billions or trillions of loading cycles.  In 

other applications the MEMS device may be subjected to unwanted machine vibrations.  For this 

reason it is important to understand the fatigue behavior of materials used in MEMS devices. 

The mechanical performance of materials used in MEMS devices depends both on the 

fabrication process and post-processing [4].  Thus to accurately measure the mechanical 

properties of MEMS devices experiments have to be performed on micron-scale specimens.  

Much of the work in fatigue characterization has been conducted for polysilicon due to its 

predominant use as a structural material for MEMS.  Various approaches have been attempted 

using both integrated and external actuation of specimens in bending and tension [5] - [8].  A 

review of the test devices developed as well as a comparison of the experimental data obtained by 

different research groups for polysilicon has been compiled by Sharpe et al. [9].  The results 

presented by Sharp et al. [9] show significant discrepancy between the results from different 

groups and a large amount of scatter in the results for each group.  Several fatigue mechanisms 

have been proposed including stress-assisted surface oxide dissolution, reaction layer fatigue, and 

mechanically induced subcritical cracking [10]. 

Significant work has also been done to characterize the fatigue behavior of LIGA Ni [11] 

- [13].  Yang et al. [13] performed tensile testing of samples composed of both columnar and 

nano-scale grains.  Depending on the thickness of the samples with columnar grains fatigue 

behavior was observed to be similar to either annealed Ni or wrought Ni.  A significant 

strengthening of fatigue resistance was found for the samples with nano-scale grains.  The 



samples with columnar grains showed evidence of persistent slip bands at which cracks were 

often found to nucleate.  For the nanostuctured samples, cracks were found to nucleate from pre-

existing surface and corner defects.  Aktaa et al. [12] also performed direct tensile testing of 

LIGA Ni.  By extending their results to the fully reversed loading condition they also found a 

good comparison with fatigue properties of bulk Ni. 

This paper presents a modeling approach which utilizes available experimental results in 

a way that allows for the stochastic fatigue modeling of MEMS devices.  The model is based on 

the theory of damage mechanics [14] - [16] and explicitly takes into account the gradual material 

degradation that occurs under cyclic loading.  The methodology consists of solving the coupled 

damage evolution and material constitutive equations in a discrete material framework that 

accounts for the stochastic nature of the material microstructure and properties.  The model is 

applied to a dog-bone shaped tensile specimen to evaluate the influence of various material 

parameters and randomness of grain boundary structure on fatigue scatter.  The model is also 

used to investigate the effects of material flaws by demonstrating the influence of a random initial 

crack on fatigue life.  

 

Discrete Element Material Representation 

The analysis presented in this investigation is based on a discrete material representation.  

The method differs from the standard numerical techniques such as the finite element method 

where a domain is discretized into smaller sub-domains in order to integrate the governing 

equations derived from continuum mechanics.  In the discrete element method (DEM) a domain 

is composed of smaller sub-domains that interact with one another through contact at their 

boundaries.  This is illustrated in Figure 1 which shows a material domain that is composed of 

numerous interacting micro-elements which represent in this case the grains of the material.  Each 

element is a rigid body with two translational degrees of freedom and one rotational degree of 

freedom.  The elements are connected along their lines of intersection with a continuous set of 



fibers.  As shown in Figure 2(a) as one element moves relative to another the fibers connecting 

the two elements are stretched.  The stretching of the fiber results in forces between the two 

elements.  As shown in Figure 2(b) the forces are decomposed into normal and tangential 

components and are given both elastic and viscous properties.  For the current study only elastic 

effects are considered with fiber stiffnesses, nK in the normal direction and tK in the tangential 

direction, that are related to the macroscopic elastic properties E (modulus of elasticity) and 

ν (Poisson’s ratio) [17].  The interaction of an element with all of its neighbors’ results in an 

equivalent force F and moment M being applied to the elements center of mass.  The solution of 

a given boundary value problem consists of specifying the time dependant boundary conditions 

and the simultaneous integration of the equations of motion for all the elements in the domain.  

Further details of the element interaction and the method by which stresses are extracted can be 

found in [17] - [18]. 

The grains of a polycrystalline material can be represented to a good degree of accuracy 

through the process of Voronoi tessellation [19] - [20].  This process consists of using a set of 

randomly placed points as nucleation points or seeds and constructing regions around them such 

that all points enclosed by the region are closer to the given nucleation point than any other 

nucleation point.  The process results in a set of convex polygons known as Voronoi polygons.  

The randomly placed nucleation points lead to a non-unique material domain for every 

tessellation simulation.  This produces topological randomness in the simulated microstructures.  

In the present model, the micro-elements are taken to be material grains that are generated 

through such a Voronoi tessellation process.  The size of the grains is controlled by specifying the 

density of the nucleation points.  The generated element shapes have variable number of sides and 

variable orientations.  The most probable number of sides is six, which also corresponds to the 

number of sides for maximum thermodynamic stability of material grains.  Care is taken during 



the tessellation process to obtain uniformity of the grain size by setting upper and lower limits on 

the distances between the nucleation points. 

 

Fatigue Damage Modeling 

Damage mechanics is concerned with the progressive deterioration of a material due to 

the initiation and growth of micro-cracks and voids [14] - [16], [21].  The initiation and early 

growth of damage is discontinuous and is strongly affected by the heterogeneous nature of 

polycrystalline materials [22].  The effects of damage on the mechanical response of a material 

are captured through the introduction of a damage variable D into the constitutive equations.  In 

general the damage variable is a tensor but under the assumption of isotropic damage it reduces to 

a scalar variable D.  A one dimensional damaged coupled elasticity law takes the form 

(1 )D Eσ ε= −                                                                      (1) 

where the value of D ranges from zero for an undamaged material to one for a completely 

damaged material.  A value of one corresponds to a complete loss of stiffness in tension 

signifying crack initiation. 

Constitutive equations for the evolution of the damage variable have been formulated 

within the framework of thermodynamics for fatigue damage, ductile damage, and creep damage 

[21].  In high cycle fatigue a commonly used form for the evolution of D is [23] - [26] 
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where N is the cycle number, σ∆ is the stress range, mσ is the mean stress, rσ and m are 

temperature dependent material parameters that have to be experimentally identified, and h is a 

crack closure parameter.  The crack closure parameter is introduced to capture the effects of the 

partial closing of micro-cracks that occur in compression.  The value of h is one in tension and 

following Lemaitre [21] is taken as 0.2 in compression.  Note that rσ which is a function of the 



mean stress is also referred to as the resistance stress [26], so called because it is the parameter 

that controls an elements ability to resist damage accumulation.  The damage variable is 

implemented within the current modeling framework through the reduction of the fiber stiffness 

components as 
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where ( )0
nK and ( )0

tK are the initial normal and tangential stiffness components.  The effect of 

damage on the normal stress-strain relationship for a particular joint, including the crack closure 

effect, is illustrated in Figure 3. 

 

Numerical Solution of the Damaged Coupled Equations 

The fatigue simulation is carried out by applying Equation (2) locally to every element to 

element fiber set within the material domain.  Solution of the resulting system of coupled first 

order differential equations requires knowledge of the stress range σ∆ in every fiber set as a 

function of the fatigue cycle N.  Since high cycle fatigue involves millions of cycles a fully 

coupled analysis using the material model is impossible and a compromise has to be made.  The 

procedure adopted here is referred to as the ‘jump-in-cycles’ method and is outlined by Lemaitre 

[21]. 

The method assumes a piecewise periodic loading that is constant over a number of 

cycles iN during which the damage of all the inter-element joints is known to be i
jD  where j 

ranges over the number of joints in the domain and i indicates a block of cycles.  The material 

model is used to determine the stress range i
jσ∆  in the joints and the damage evolution rate in 

each joint is given by 
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The increment in damage D∆  is assumed to be constant over the block of cycles so the number 

of cycles in the current block of cycles is computed as 
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is the joint with the maximum damage evolution rate.  The number of cycles is updated as 

 1i i iN N N+ = + ∆  (7) 

and the damage at each joint is updated using 
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The joint fiber stiffnesses are updated according to Equation (3) and the procedure is repeated for 

the next block of cycles.  The value of the damage increment D∆ has to be chosen large enough 

to allow a reasonable computational time but small enough so that the coupling between damage 

and stress is not violated.  The piecewise linear growth in damage produced by the procedure is 

illustrated in Figure 4. 

 

Identification of Material Fatigue Parameters 

As described earlier the fatigue damage evolution equation introduces two new material 

parameters that have to be experimentally determined.  The method used here is to identify the 

parameters from experimental stress-life data (S-N curve) available in the literature.  Buchheit et 



al. [11] performed fully reversed, R = -1, evaluation of LIGA Ni samples.  Their experimental 

results are shown in Figure 5.  Also shown is a power law fit of the data of the form 

 BANσ∆ =  (9) 

where aσ is the stress amplitude.  Using the least squares method the curve fit parameters to the 

experimental results are determined to be 

  , 2063 0.112.A BMPa= = −  (10) 

A comparison is made with the damage evolution equation by assuming that there is no coupling 

between the damage and stress level and taking the micro-crack closure parameter to be one in 

both tension and compression.  Under these conditions Equation (2) can be integrated from the 

undamaged to completely damaged states giving 
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where fN is the number of cycles to failure at the stress level σ∆ .  Rearranging Equation (11) 

gives 

 ( )
1 1

1 .m m
r m Nσ σ − −∆ = +  (12) 

Comparison with Equations (9) and (10) gives the fatigue material parameters as 

8 93 2668rm . , MPa.σ= =                                                          (13) 

 

Application of the Model to a Tensile Specimen 

The damage mechanics based fatigue model is applied to a dog-bone shaped fatigue 

specimen to predict the stress life behavior and to investigate the influence of various material 

parameters and process induced material flaws on fatigue scatter.  Figure 6 illustrates the 

dimensions of the simulated specimen.  Tensile specimens of similar shape and dimension have 

been produced using micro-machining techniques by several research groups [27] - [30] for 



fatigue testing by external actuation.  Table 1 contains the parameters used in this investigation.  

Fifty material domains were generated using the Voronoi tessellation process to evaluate the 

statistical nature of the fatigue phenomena.  The boundary conditions imposed on the specimen 

are that the x displacement degrees of freedom on one end are fixed while the x displacement 

degrees of freedom on the other end are specified such that the desired stress amplitude is 

obtained in the straight section of the specimen.  It is assumed that the fatigue behavior is 

governed by the normal stress component acting on the element boundaries.  To reduce the 

computational effort for the statistical and stress life investigations of the tensile specimen the 

simulations were performed only up to the condition of crack initiation.  This is warranted in light 

of the fact that much of the scatter that occurs in fatigue data can be attributed to the initiation and 

early growth of fatigue cracks [22] and also due to the fact that in the case of high cycles fatigue 

much of the life is spent in the crack initiation stage [31]. 

Shown alongside the experimental data and curve fit in Figure 5 are the analytical results 

obtained using the model under the assumption of uniform material properties (E, ν , rσ and m).  

At each stress level simulations were performed using ten domains.  Under the assumption of 

uniform material properties the only source of randomness is topological randomness due to the 

geometrical variations in the microstructures produced using the Voronoi tessellation process.  As 

can be seen from Figure 5 this source of randomness alone has very little effect on the scatter in 

the fatigue data.  Note however that there is good agreement between the simulated and 

experimental results. 

 

 

 

 

 

 



Table 1: Simulation Parameters 

Elastic modulus of material (E) 175 GPa 

Poisson’s ratio ν  0.31 

Tensile Strength 550 MPa 

Mean Element size 13 mµ  

Damage increment ( D∆ ) 0.02 

Stress amplitude aσ  200 MPa 

Stress ratio R = max min/σ σ  -1 

 

Effect of Material Inhomogeneity on Fatigue Life 

Inhomogeneous material behavior can result from geometrical variations in the 

microstructure, grain anisotropy and spatially distributed material properties.  To investigate the 

effects of material inhomogeneity on fatigue life three sources will be considered independently.  

The conditions to be investigated are homogenous material properties, variable elastic modulus 

and variable resistance stress.  For each condition fifty domains are subjected to a maximum 

stress of 200 MPa under completely reversed loading conditions until a crack initiates. 

Homogenous Material Properties:  In this case, the material elastic and damage properties (E, 

ν , rσ and m) are held constant throughout the domain.  This condition isolates the variability 

between the domains to that of the microstructural randomness that occurs as a result of the 

Voronoi tessellation process.  The results for this condition are shown on a Weibull probability 

plot in Figure 7.  The Weibull slope is 12.94 and the Weibull strength, indicating the number of 

cycles for which the probability of failure is 63.2%, is 2,626,567 (cycles).  The large value of the 

Weibull slope indicates that there is very little scatter in the results. 

Variable Elastic Modulus:  For the second condition the elastic modulus is assumed to vary 

spatially throughout the domain.  This condition is implemented by treating the elastic modulus 

as a random variable and sampling each of the individual joint stiffnesses nK and tK  from a 

normal distribution centered at a mean modulus of 175 (GPa) and with a standard deviation of 

5.83 (GPa).  The other material properties (ν , rσ and m) are held constant.  This condition will 



create local stress concentrations in the domain due to the interaction of elements with different 

stiffnesses.  The results are shown in Figure 7.  The data fall in a straight line indicating 

adherence to a Weibull distribution.  The Weibull slope of the data is 7.61 and the Weibull 

strength is 2,173,140 (cycles).  The lower values of the Weibull slope and Weibull strength 

indicate an increase in scatter and a reduction in the fatigue life as compared with the 

homogenous property condition.  

Variable Resistance Stress:  For the final condition a spatially distributed value of resistance 

stress, rσ , is considered.  This condition is implemented in the model by sampling the resistance 

stress term for each inter-element joint from a Normal distribution with a mean of 2668 (GPa) 

and a standard deviation of 89 (GPa).  The other material properties (E, ν , and m) are held 

constant.  The results for this condition are also shown in Figure 7.  Again, the data follows a 

straight line.  The Weibull slope of the data is 8.58 and the Weibull strength is 1,755,693 (cycles).  

This condition leads to a nearly identical increase in scatter as was found for the variable elastic 

modulus condition.  As expected, a larger reduction in fatigue life results for this condition, 

because the resistance stress variable relates directly to the fatigue strength of the elements. 

 

Effect of Material Flaws on Fatigue Life 

Flaws in MEMS components can be produced both during fabrication and post-processing.  

During fabrication voids and or weak bonds can form between neighboring grains.  During 

etching processes overetch can lead to undercuts and/or surface flaws.  For the case of polysilicon 

material work has been conducted to characterize the critical flaw size and location in the context 

of brittle failure [32] - [35].  These same flaw populations can act as sites of stress concentration 

where fatigue crack initiation is likely to occur.  In this section, the effects of three types of initial 

material flaws on fatigue life are considered.  For each type of flaw, life data was obtained for 

fifty domains under the loading conditions considered previously. 



Initially Broken Intergranular Bond:  The first type of flaw considered was an initially broken 

intergranular bond.  This flaw is implemented in the model by randomly selecting a joint within 

the straight section of the dog-bone and assigning it an initial damage value of one.  A joint with a 

damage value of one will have no stiffness in tension and a reduced stiffness in compression over 

that of the surrounding material.  Uniform material properties are assumed.  The distribution of 

Von Mises stress around an initially broken bond, represented by a black line, for one of the 

specimens is shown in Figure 8.  Thee stress concentration caused by the flaw can be clearly seen 

in Figure 8.  The crack initiation lives are shown on a Weibull probability plot in Figure 9.  The 

Weibull slope of the data is 3.21 and the Weibull strength is 2,125,316 (cycles).  The Weibull 

slope indicates a much larger increase in scatter than resulted for each of the variable material 

property cases.  However, the Weibull strength falls between those that resulted for the conditions 

of variable elastic modulus and variable resistance stress.  

Internal Void:  The second type of flaw considered was an internal void within the domain.  This 

is implemented in the model by randomly removing one element from the interior of straight 

section of each domain.  The distribution of Von Mises stress around the internal void for one of 

the domains is shown in Figure 10.  The crack initiation lives are shown on a Weibull probability 

plot in Figure 9.  The Weibull slope of the data is 1.12 and the Weibull strength is 133,009 

(cycles).  This condition leads to a large increase in scatter and to a large decrease in the Weibull 

strength. 

Surface Void:  The final type of material flaw that will be considered is an initial surface void as 

might result from non-perfect wet or dry etching [36].  This is implemented in the model by 

randomly removing one element from the surface of the straight section of each specimen.  The 

distribution of Von Mises stress around a surface void for one of the domains is shown in Figure 

11.  The crack initiation lives are shown on a Weibull probability plot in Figure 9.  The Weibull 

slope of the data is 0.71 and the Weibull strength is 11,266 (cycles).  This condition leads to the 



largest increase in scatter and largest decrease in Weibull strength of all the conditions 

considered. 

The Weibull statistics for all of the material property and flaw cases are summarized in 

Table 2.  Material property variation led to a slight increase in scatter and also to a slight decrease 

in the Weibull strength.  The results were similar for both the variable elastic modulus and 

variable resistance stress conditions.  The initial broken intergranular bond condition led to a 

larger increase in scatter but to a decrease in Weibull strength that was similar to the variable 

material property conditions.  The most critical effects were seen for the initial internal and 

surface voids which both led to a large reduction in the Weibull strength indicating a significantly 

lower fatigue life.  Please note that for the material flaw cases, particularly the initial surface void 

case, the results don’t follow a straight line indicating that the two parameter Weibull distribution 

is not the best fit and perhaps a three parameter Weibull distribution should be considered. 

 

Table 2: Weibull Probability Statistics 
Simulation Condition Weibull Slope, e Weibull Strength (cycles) 

Homogenous 12.94 2626567 

Variable Modulus 7.61 2173140 

Variable Resistance Stress 8.58 1755693 

Initial broken intergranular bond 3.21 2125316 

Initial internal void 1.12 133009 

Initial surface void 0.71 11266 

 

Effect of Material Flaws on Stress Life Behavior  

 The previous simulations have all been performed at a single stress level so that some 

characteristics of the statistical behavior could be described.  Also of interest to the MEMS 

designer is the fatigue behavior of a component over a range of stresses.  To capture this behavior 

simulations are performed at five different stress levels so that a stress-life curve can be obtained.  

Three stress-life results are produced corresponding to each of the three types of initial flaws 

considered previously.  For each initial flaw condition ten domains with uniform material 



properties were used at each stress level.  As was shown in Figures 8, 10 and 11 each type of 

initial flaw led to a stress concentration in the domain.  Depending upon the stress level and the 

severity of the stress concentration static failure could occur.  To check for static failure the 

normal stress in each joint is first compared against the static strength of the material, listed in 

Table 1, before the damage evolution equation is applied.  If the stress in any joint exceeds the 

tensile strength of the material the joint is assumed to break under static conditions. 

 The stress life results corresponding to each of the initial flaw conditions are displayed in 

Figures 12 through 14.  Also shown, for comparison purposes is the stress life results for the ten 

domains used for each condition in the absence of the flaw considered.  Figure 12 shows the 

stress life curve for the initial broken intergranular bond.  The data follows very closely the flaw 

free condition with some overlap in the data occurring at each stress level.  At the highest stress 

level, 400 (MPa), two of the domains failed statically.  Figure 13 shows the stress life results for 

the case of an initial internal void.  Much more scatter can be seen in the data compared to the 

initial broken bond case.  At the highest stress level seven of the domains failed statically.  Figure 

14 shows the stress life results corresponding to the condition of an initial surface void.  This 

condition led to the largest increase in scatter, the largest decrease in life and to the most domains 

failing statically.  At the highest stress level all ten domains failed statically.  At a stress of 300 

(MPa) six of the domains failed statically and at a stress of 200 (MPa) one domain failed 

statically. 

 For each of the stress life results developed a power law fit is made through the mean of 

the life data that did not fail statically at each stress level.  For each condition the slope of the 

power law curve was within five percent of that of that given for the experimental data in 

Equation 10.  The results indicate the deleterious effects caused by the initial flows which lead to 

both a reduction in the overall life and to an increase in scatter in the data.  For the surface void 

condition the fatigue life at the lower stress levels is spread out over more than two orders of 

magnitude of cycles. 



 

Predicting the Life of a MEMS Resonator 

 The previous simulations were performed for the simple stress state of uniform tension.  

MEMS structures are varied and are subjected to many different states of stress.  One common 

structure, depicted in Figure 15, consists of a membrane suspended above a substrate by 

supporting beams.  Such a structure might be found in application as a MEMS resonator, variable 

capacitor or accelerometer [37] - [38].  Simulations were performed to determine the life of one 

of the supporting beams as it is subjected to cyclically varying loads due to the motion of the 

membrane.  The material properties listed in Table 1 will again be used.  The dimensions of the 

supporting beam are given in Figure 16.  The boundary conditions imposed on the beam are that 

one end is fixed while at the other end all of the elements are given an equivalent displacement in 

the y direction.  The distribution of Von Mises stress that is developed in the beam due to these 

boundary conditions is shown in Figure 16.  Bending stresses are developed in both the horizontal 

and vertical sections of the beam with the maximum stresses occurring at the fixed end.  To 

produce a stress life curve simulations were performed at four different displacement amplitudes 

from 1.0 (�m) to 0.25 (�m).  The simulations are performed through both the crack initiation and 

crack propagation stages so that the total life of the beam is obtained.  The life of a particular 

beam versus the number of broken joints in the domain is shown in Figure 17.  It can be seen in 

the figure that at a certain number of cycles a large number of joints break at once.  This is the 

point at which catastrophic failure occurs and determines the total life of the component.  The 

final crack pattern for the beam whose life is depicted in Figure 17 is shown in Figure 18.  For 

this and many of the domains generated the first crack to develop often occurs at the corner where 

the vertical and horizontal sections meet due to the stress concentration that this union creates.  

For all of the cases considered the crack that propagated to failure occurred close to the fixed end.  

The lives of ten beams are found at each displacement amplitude.  The stress versus life result is 



shown in Figure 19.  The stress values given along the ordinate are the maximum stresses that 

occur in the domain at each displacement amplitude. 

 

Summary and Conclusions 

This paper presents a damage mechanics based fatigue model to study the process of 

fatigue crack initiation and propagation in MEMS devices.  The model takes into account the 

gradual material degradation that occurs under cyclic loading through an empirical damage 

evolution equation whose parameters are determined from fatigue testing of MEMS materials. 

The most important salient features of the proposed model include: a) the ability to predict the 

MEMS fatigue life over many hundreds of billions of cycles based on experimental data collected 

from a few million cycles; b) the ability to account for the statistical variation of the material 

properties; and c) the ability to account for material flaws caused by non-perfect fabrication 

techniques.  The model is applied to a dog-bone shaped tensile specimen, a shape which has been 

commonly used in MEMS material testing, to investigate the effects of material heterogeneity and 

material flaws on fatigue life.  Allowing for variability in the elastic and damage properties was 

found to lead to a similar increase in scatter and reduction in fatigue life.  Much larger reductions 

in life and increases in scatter occurred when initial material flaws were considered.  The largest 

increase in scatter and largest reduction in life occurred when there was an initial surface void.  

Stress life curves generated using the model showed fatigue lives scattered over more than two 

orders of magnitudes of cycles for some conditions.  The ability of the model to predict the lives 

of different types of devices and loading conditions was demonstrated by generating the stress life 

curve for a MEMS resonator support beam. 
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Figure 1: A solid formed by a collection of discrete elements subjected to an applied 
external boundary loading. 

 
 

Figure 2: (a) Inter-element contact in the discrete model; (b) Fiber model. 



 

Figure 3: Degradation of joint normal stiffness with damage accumulation. 

 

Figure 4: Piecewise linear approximation for damage evolution. 



 

Figure 5: S-N curve for LIGA Ni, Buchheit [3]. 

 

Figure 6: Fatigue specimen modeled using the discrete element based material 
model.  Dimensions are given in micrometers. 



 
Figure 7: Weibull life plot for crack initiation in fifty different domains subjected to 

different material property conditions. 
 

 
Figure 8: Von Mises stress distribution in a tensile specimen with one initial broken 

bond for a stress amplitude of 300 MPa..  (b) Close up view of the stress distribution around 
the initial broken bond represented by the black line.  The stress values are given in MPa. 



 

 
Figure 9: Weibull life plot for crack initiation in fifty different domains with initial 

flaws. 
   

 
Figure 10: Von Mises stress distribution in a tensile specimen with one initial 

internal void for a stress amplitude of 300 MPa.  (b) Close up view of the stress distribution 
around the void. The stress values are given in MPa. 



 
Figure 11: Von Mises stress distribution for a tensile specimen with one initial 

surface void for a stress amplitude of 300 MPa..  (b) Close up view of the stress distribution 
around the initial surface void.  The stress values are given in MPa. 

 

 
Figure 12: S-N curve for crack initiation in a tensile specimen with one initial crack. 



 
Figure 13: S-N curve for crack initiation in a tensile specimen with one initial 

internal void. 
 

 
Figure 14: S-N curve for crack initiation in a tensile specimen with one initial 

surface void. 



 
 
 

 
 

Figure 15:  MEMS Resonator 
 
 

 
Figure 16: Von Mises stress distribution in a MEMS resonator support beam subjected to a 

yδ = 1.0 (�m) displacement.  Dimensions are in micrometers.  The stress values are given in 

MPa. 
 



 
Figure 17: Fatigue life versus the number of cracks in the beam supporting 

structure for a particular domain. 
 

 
 
 

Figure 18: Crack propagation pattern in MEMS resonator support beam. 
 



 
Figure 19: S-N curve for the total life of a MEMS resonator support beam. 

 


