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SUMMARY

This paper describes the development of an efficient and accurate algebraic multigrid finite element
solver for analysis of linear elasticity problems in two dimensional thin body elasticity. Such problems
are commonly encountered during analysis of thin film devices in micro-electro-mechanical systems. An
algebraic multigrid based on element interpolation is adopted and streamlined for the development
of the proposed solver. A new, node-based agglomeration scheme is proposed for computationally
efficient, aggressive and yet effective generation of coarse grids. It is demonstrated that use of
appropriate finite-element discretization along with the proposed algebraic multigrid process preserves
the rigid body modes that are essential for good convergence of the multigrid solution. Several case
studies are taken up to validate the approach. The proposed node-based agglomeration scheme is shown
to lead to development of sparse and efficient intergrid transfer operators making the overall multigrid
solution process very efficient. The proposed solver is found to work very well even for Poisson’s
ratio > 0.4. Finally, an application of the proposed solver is demonstrated through a simulation of a
micro-electro-mechanical switch. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A linear elasticity analysis is frequently required during simulations of multiphysics problems
in applications such as micro-electro-mechanical systems (MEMS) [1]. Typically, these modern
devices involve complicated geometries, extremely high aspect ratios and disparate material
properties. Finite element method (FEM) is the most commonly used numerical method for
their analysis [2]. However, the use of FEM discretization often leads to systems of equations
that are large, sparse, ill-conditioned and semi-definite or indefinite. Many standard iterative
methods, like incomplete Cholesky preconditioned conjugate gradient, break down in case
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the matrix is indefinite or semi definite. A particular example of such a case is a cantilever
beam with aspect ratios (length-to-height ratio) greater than 50:1. Aspect ratios commonly
encountered in MEMS structures are in the range of 50:1 to 500:1. Also, incomplete LU
factorization results in relatively large number of non-zero entries in the L and U factors
and thus their efficiency is not satisfactory.

Multigrid approaches offer a potentially superior alternative to these methods for the
iterative solution of the FEM approximation of this class of problems. Whereas geometric
multigrid methods have been used successfully for preconditioning of FEM approximations of
the Laplace equation, their application is most suitable to more structured geometries [3]. In
particular, their usefulness is limited when the choice of coarse grids is not obvious. Algebraic
multigrid methods (AMG), on the other hand, do not rely on the attributes of the geometry
under consideration but operate only on the linear system and take advantage of the nature
of the algebraic error [3].

Classical AMG theory has been based on M-matrices (M-matrix is a symmetric positive
definite matrix with positive entries on the diagonal and non-positive off-diagonal entries).
However, as stated earlier, frequently we encounter non-M matrices in the FEM approximation
of the aforementioned class of problems. For some of the problems, particularly scalar problems
with one degree of freedom per node, classical AMG may still be used after careful problem-
based parameter tuning. However, a systematic approach for its use is not available.

AMG-based solvers for elasticity face several challenges due to the presence of two, coupled
unknowns per node in the case of two-dimensional problems and three, coupled unknowns
per node in the case of three-dimensional problems. Most AMG approaches have encountered
difficulties handling such problems. Griebel et al. [4] presented a generalization of classical
AMG methodology for these problems through a block approach. The methodology required
the a-priori definition of two parameters α and β during the set up phase, in a manner analogous
to that in classical AMG. They demonstrated that interpolation is able to conserve rigid
body modes for translation for all grids, while those corresponding to rotation are conserved
only for point symmetric grids. For plane strain problems, they were able to demonstrate
satisfactory convergence rates for Poisson’s ratio up to 0.4; however, the convergence rates
rapidly deteriorated for Poisson’s ratio > 0.4. This is problematic for beams used in MEMS
devices, since Poisson’s ratio > 0.4 is commonly encountered. For example, Au electrodes have
a Poisson’s ratio of 0.42.

In the context of semi-definite problems in crystals with free boundaries, Xiao et al. [5]
recently proposed an AMG approach in which interpolation operators are constructed to
reproduce rigid body modes. Their methodology relies on the geometric information of grid
coordinates. Smoothed aggregation methods were introduced by Vanek et al. [6] to tackle
elasticity problems using prior knowledge of rigid body modes. In order to better approximate
the smooth error, Brezina et al. [7] have proposed AMG based on element interpolation
(AMGe). They make use of local stiffness matrices for defining very accurate interpolation
operators. The focus in [7] is on developing a robust interpolation scheme without worrying
about the choice of underlying coarse grids. Some case studies were used to demonstrate the
robustness of the AMGe interpolation in conjunction with traditional coarsening strategies like
geometric coarsening. In [8], a face based agglomeration algorithm is introduced to form coarse
grids with an AMGe interpolation procedure used for forming the interpolation operators. A
case study involving a two-grid approach on a square domain was used to demonstrate the
validity of their method.
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One of the important components of multigrid solution process is the formation of the coarse
grid. Formation of coarse grid is dictated by several conflicting objectives, namely, set up cost,
ease of set up without having to generate too much information, good convergence, sparsity,
effective problem size reduction, ease of recursion and consistent coarse grid formation with
sufficient coarse grid nodes for AMGe process. In the following we present a simple and effective
algorithm for systematically generating coarse grids and defining coarse grid points. The
proposed algorithm allows for a systematic application of the AMGe interpolation procedure.
For elasticity, where multiple degrees of freedom (d.o.f) per node must be accommodated,
our algorithm defines the coarse d.o.f’s as the set of all d.o.f’s per coarse node. So the
coarsening is carried out as though it is done for a scalar problem. This avoids creation of
non-physical grids. We adopt a block approach for implementing the AMGe interpolation
procedure. We demonstrate that it preserves rigid body modes of translation and rotation
for an appropriate finite element discretization. We demonstrate the robustness and accuracy
of the proposed algorithm through a series of numerical studies that involve both structured
and unstructured grids for well conditioned and ill conditioned/high aspect ratio problems.
Finally, we demonstrate how the proposed node-based AMGe solver can be utilized for efficient
elasticity analysis of MEMS devices.

2. FEM for elasticity

Let us a consider an elastic solid described by the domain Ω ⊂ R2 under the influence of
different forces. The governing equations are

∂σxx

∂x
+

∂σxy

∂y
= 0

∂σyx

∂x
+

∂σyy

∂y
= 0 (1)

where σxx, σyy are stresses normal to the x and y directions, respectively, and σxy is the shear
stress. For plane strain, the stresses are related to corresponding strains as follows,
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where E is the Young’s modulus of elasticity and ν is the Poisson’s ratio. It is immediately clear
from the above expression that as ν approaches 0.5 the stress-strain relation matrix becomes
increasingly ill-conditioned. All physical materials have ν ∈ [0, 0.5). For plane stress,
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Strains ǫ’s are, in turn, related to displacements u, v in the x, y direction as,
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Through a weighted residual process on a finite element discretization of the domain into N
nodes and Ne elements, the governing equations are approximated in terms of a system of
linear equations of the form

Ax = b (5)

where A is the 2N × 2N stiffness matrix, x is the 2N × 1 displacement vector and b is the
2N ×1 force vector. Thus, corresponding to each node there exists a 2×1 displacement vector
[u v]T . The finite element discretization used utilizes either isoparametric three-node linear
triangular elements or four-node bilinear quadrilateral elements. Both types of elements are
complete in the sense that they are able to represent zero-strain state corresponding to rigid
body modes of translation and rotation [9]. For example, let us consider the shape functions
used for interpolation of nodal displacements in bilinear quadrilateral elements [9],

u(x) = α1 + α2x + α3y + α4xy (6)

v(x) = β1 + β2x + β3y + β4xy (7)

A non-zero α1 (with the rest of the coefficients all zero) gives rigid body mode in x, a non-
zero β1 (with the rest of the coefficients all zero) gives rigid body mode in y, and α3 = −β2

gives rigid body rotation. This property is important for ensuring a convergent finite element
solution. Consequently, the global stiffness matrix assembled from such a discretization without
boundary conditions is singular and its null space, N(A), consists of the rigid body modes of
horizontal and vertical translation and in-plane rotation. If the rows and columns in the matrix
A (without the boundary conditions) are rearranged such that all variables corresponding to
horizontal displacements u are first, followed by vertical displacements v, we have for N(A)

[

Auu Auv

Avu Avv

] [

u
v

]

= 0 (8)

This null space is spanned by

N(A) = span
{

(1, 0)T , (0, 1)T , (−y, x)T
}

(9)

where, 1 = (1, 1, ..., 1)T , 0 = (0, 0, ..., 0)T , y = (y1, y2, ..., yN ) and x = (x1, x2, ..., xN ).

3. Numerical solution through AMG

Iterative solvers like Gauss-Seidel when applied to the solution of Ax = b exhibit slow
convergence, especially for problems involving significant material and geometric complexity.
This can be attributed to their inability to reduce the smooth components of the error
effectively. Multigrid methods offer a remedy to this problem.

Multigrid methods work on the principle that the smooth components appear oscillatory
on a coarser grid, and thus can be effectively reduced on the coarser grid through smoothing.
Consequently, they utilize a hierarchy of grids of variable spatial resolution, and require the
transfer of the residual error in the iterative solution of the problem from one grid to another.
For our purposes, AMG is employed to improve the performance of the Gauss-Seidel smoother.

The basic algorithm for a V-cycle V(ν1,ν2,x,b) AMG is outlined below [3]
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Algorithm 1. V-cycle AMG

IF (Current Grid is not the Coarsest Grid),

(1.1) Relax Ax = b on current (fine) grid (using iterative solver like Gauss-Seidel) for ν1

times.
(1.2) Compute residual on current (fine) grid, rf = b−Ax.
(1.3) Project residual to next coarse grid using restriction operator R, rc = Rrf .
(1.4) Set xc = 0 and call V c(ν1, ν2, x

c, rc)
(1.5) Interpolate error back to the fine grid using interpolation operator P , ef = Pec.
(1.6) Correct the solution on the fine grid x← x + ef .
(1.7) Relax on the fine grid for ν2 times.

Else
(1.8) Compute Ac = PT AP and solve the equation Ace

c = rc exactly on the coarsest grid.

Implementation of the above algorithm requires the following:

• Development of coarse grid(s) at multiple levels - defining new elements and nodes
• Definition of the restriction and interpolation operators (R, P ) and the matrix Ac for

the coarse grid.

Its computational cost is dictated by

• Set up cost: Cost of forming coarse grids, interpolation ( or restriction) operators, coarse
grid matrices (Ac)

• Execution cost: Cost of performing V cycles to achieve desired tolerance. It depends on
residual reduction obtained in each cycle and the sparsity of intergrid and coarse grid
operators.

The success of AMG depends on the accuracy with which smooth components of the
error can be represented on the coarse grid, which, in turn, depends on the interpolation
and restriction operators. In classical AMG, these operators are obtained using certain rules
that are based solely on the relative magnitudes of the matrix entries (notion of strength of
connection) without regard to underlying physics. This approach is suitable for systems of
equations involving M-matrices where the strength of connection is easy to measure. Also, the
strength of connection is based on a predefined parameter, which may have to be changed from
problem to problem. However, in systems involving non M-matrices or systems representing
complex material and geometric domains, a different approach needs to be adopted for effective
construction of these components.

This is the main motivation for the development of AMG based on element interpolation
(AMGe) [7]. It makes use of information contained in element stiffness matrices for building
multigrid components, while at the same time does not rely on grid geometry or definition of
any problem-specific parameter. The development of such a solver is described next.
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4. AMGe based on nodal agglomeration

4.1. Node-based agglomeration for coarse grids

Any standard mesh generator gives information about node numbering, element numbering,
and the nodes associated with a given element. Thus, for the sake of efficiency, it is desirable to
use only this information for forming coarse grids. This is accomplished through a node-based
agglomeration process as described next.

We begin by defining the following:
Boundary B = {n1, ..., nb}, i.e. a collection of nodes
Element e ={n1, ..., np}, i.e. a collection of p nodes, obtained from the mesh generator
Agglomeration - The process of combining fine elements into a single coarse element. Each
node is assigned an integer weight, w. Agglomeration is controlled using the weight assigned
to a node.

Algorithm 2. Node-based Agglomeration

• Initialization: Set w(n) = 0 for all nodes n.
• Loop over all nodes

For n = 1, NumberofNodes

1. If w(n) = −1, increment n and go to the next node
Else
Set E = e1 ∪ e2...... ∪ em, where e1, e2, ...em are the elements to which the node n
belongs. Thus, combine all elements connected to a node into a single agglomerated
element.

2. Set w(k) = −1, for all nodes k contained in the elements that have been
agglomerated.

• Sweep over the left-over elements
For all elements that have not been agglomerated,

1. For all nodes k on this element, determine the agglomerated element E to which
each node belongs

2. If more than one node belong to the same agglomerate, choose that agglomerate
to merge the current element with. Otherwise, just add the current element to an
agglomerate corresponding to any one node.

The above agglomeration algorithm results in the formation of a coarser grid consisting of
agglomerated elements. The complexity of this algorithm is linear (O(N)). This algorithm
makes sure that no fine element is part of more than one agglomerate.

The next task involves choosing the nodes that will be retained on the coarse grid. The
choice of these nodes, which will be referred to as coarse nodes, will dictate the accuracy with
which interpolation operators between the coarse and fine grids are built. The coarse nodes
are defined as follows. Intersection of three or more agglomerated elements is considered as a
coarse node. The boundary of the domain is treated as one agglomerated element. Thus, for
each node that is not on the boundary in the fine grid, we find the number of agglomerated

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
Prepared using cnmauth.cls



A NODE-BASED AGGLOMERATION AMG SOLVER FOR LINEAR ELASTICITY 7

Figure 1. Node-based agglomeration - definition of coarse and fine nodes.

elements that contain this node. If the number is at least 3, then this node is identified as a
coarse node. If a fine node is on the boundary, then it is defined as a coarse node if it is shared
by at least 2 agglomerated elements. Since for elasticity problem we have 2 d.o.f’s per node,
all d.o.f’s at a node are considered as coarse d.o.f’s. Finally, for a coarse element we consider
the agglomerated element after dropping the fine nodes present in that agglomerate.

The aforementioned algorithm is easy to implement recursively. Furthermore, because of its
node-centric nature, it results in very aggressive coarsening. Examples justifying this statement
are presented in the numerical studies section.

An illustration of the node-based agglomeration process is depicted in Figure 1. Dotted
lines mark fine grid triangular elements. There are three agglomerates, namely, E1, E2 and
E3. Nodes 2, 5, 9, 10 are coarse nodes. Nodes 1, 3, 4, 6, 7, 8, 11 are fine nodes. Thus, E1 with
2,5,10 is one coarse element; E2 has 2,5,9; while E3 has 5,9,10.

Implementation of this algorithm recursively on an unstructured triangular grid (generated
using Triangle [10]) results in the formation of successively coarser grids as depicted pictorially
in Figure 2.

4.2. Formation of the intergrid transfer operators and the coarse matrix Ac

As mentioned earlier, the success of AMGe depends on the accuracy with which the residual
error from the fine grid is mapped onto the coarse grid for subsequent smoothing. A set of rules
involving element stiffness matrices has been proposed and justified in [8] for this mapping.
These rules constitute the foundation for an algorithm for the construction of the prolongation
operator P and the restriction operator R. It is noted that the two operators are related by
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Figure 2. Multiple coarse grids resulting from the recursive implementation of the node-based
agglomeration algorithm (Algorithm 2).
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[8]
R = PT (10)

Thus, construction of only one of the two matrices is required. The algorithm described below
is for the construction of the prolongation matrix P .

Algorithm 3. Construction of Prolongation Matrix
If a node n is a coarse node then the interpolation is identity.
Else the following sets are formed:

• A neighborhood Ω(n) = ∪ { all agglomerated elements E(n) that contain n }.
• A set N(n) = ∩{ all agglomerated elements E(n) that contain n }.
• Boundary, ∂N(n), of the set N(n). ∂N(n) includes the nodes in N(n) that are coarse.

The coarse nodes n1
c , ..., n

p
c , contained in the set ∂N(n), are used for interpolation. For example,

for node 6 in Fig. 1, neighborhood Ω(n) = E2∪E3 = {2, 3, 5, 7, 8, 9, 10, 11}, set N(n) = {5, 6, 9}
and ∂N = {5, 9}. A matrix, AΩ(n), is assembled using stiffness matrices of all elements
contained in the neighborhood. The matrix is subsequently divided into a two-by-two block
structure, corresponding to the partitioning (Ω(n)\∂N(n)) ∪ ∂N(n), as follows

AΩ(n) =

(

Aii Aib

Abi Abb

)

(11)

In the above, the subscript i stands for interior nodes, i ∈ (Ω(n)\∂N(n)) ({2, 3, 7, 8, 10, 11} in
above example) , and b stands for boundary nodes, b ∈ ∂N(n) ({5, 9} in above example). This
definition makes the interpolation operator constructed in this fashion compatible.

It is important to note that Aii is 2Ni × 2Ni, Aib is 2Ni × 2Nb , Abi is 2Nb × 2Ni

and Abi is 2Nb × 2Nb. This approach, where the entries corresponding to horizontal and
vertical displacements at a node are considered in a block fashion, is important to ensure the
conservation of rigid body modes. It is also known as the block approach. The interpolation
(prolongation) coefficients for the node n under consideration are obtained by extracting the
nth row of the following product [8]

C = −A−1
ii Aib (12)

Once the prolongation matrix has been developed stiffness matrices for each coarse grid
element can be formed by first extracting the interpolation operator, P e, for the nodes
contained in that element. Then, the stiffness matrix for the coarse grid element is computed
as

Ae
c = P eT AΩ(n)P

e (13)

Finally, the coarse grid global stiffness matrix, Ac, is obtained from the assembly of all coarse
grid element stiffness matrices.

This completes all the components that are necessary for the application of AMG.

4.3. Preservation of rigid body modes

Let us consider the assembled neighborhood matrix AΩ. Let x = [xi xb]
T be a vector in the

null-space of AΩ. As stated earlier, if the finite element discretization consists of three-node
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10 P.S.SUMANT, A.C.CANGELLARIS AND N.R.ALURU

linear triangular elements or four-node bilinear quadrilateral elements, and if a complete linear
polynomial is used for interpolation, then it can be shown that the element can represent
zero-strain state or rigid body modes corresponding to translation and rotation. Since the
neighborhood matrix AΩ locally is an assembly of stiffness matrices in the neighborhood,
x corresponds to the local rigid body mode. Next, consider a block partitioning of the
neighborhood matrix,

AΩ =

(

Aii Aib

Abi Abb

)

(14)

So, the rigid body modes locally satisfy,
[

Aii Aib

Abi Abb

] [

xi

xb

]

= 0 (15)

Thus, we have
Aiixi + Aibxb = 0 (16)

which leads to
xi = −A−1

ii Aibxb (17)

A comparison of this with the equation for interpolation reveals that interpolation preserves
the rigid body modes locally. Furthermore, a d.o.f at a fine grid point is interpolated only from
the coarse grid points in its neighborhood. Thus, the rigid body modes are conserved even
globally.

5. NUMERICAL SIMULATIONS

In this section we present several case studies aimed at the demonstration and validation of
the proposed AMGe solver. A variety of metrics are used for assessing the performance of our
proposed solver. We define relative residual at the mth iteration as,

rel. res =
‖rm‖l2
‖r0‖l2

(18)

The AMG iterations are stopped when

rel. res ≤ tol (19)

The tol is taken as 1e-6 for most of the case studies. The asymptotic convergence factor ρ is
defined as

ρ = (rel.resiter)
1/iter (20)

In order to quantify the performance of coarsening process, we compute the total-grid-

complexity, c(G), as follows,

c(G) :=

J−1
∑

i=0

ni
u/n0

u (21)

where ni
u is the number of grid points of the ith level and J is the total number of levels. The

computational cost of each AMG cycle is dictated by the non-zero entries in the grid operator
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matrix A at each coarse grid level. To estimate this, we define the total-operator-complexity,
c(A), as follows,

c(A) :=

J−1
∑

i=0

nnzi/nnz0 (22)

where nnzi is the number of non-zeros of the grid operator at the ith level.
We consider two main classes of problems, square plate discretized using both structured

and unstructured grids, and a cantilever beam discretized using a structured grid.

5.1. Unit square

Figure 3. Unit square

As a first case study we consider the problem examined in [5] (Figure 3). It utilizes an
unstructured triangular grid on a unit square and plane strain elasticity formulation. Relative
residual stopping criterion is 1e-6. Triangle [10], is used for generation of unstructured grids
for our simulation. V(3,3) AMG cycles are used. Summarized in table I is a comparison of
number of iterations for convergence between our solver for different levels of grid and the
method in [5] for two extreme grid sizes. It is evident that the performance of our solver gets
even better for finer grids.

# elements ref[5] our solver - 2 level our solver - 3 level our solver - 4 level
1230 12 5-6 9 11-12
57566 10 4 5 6-7

Table I. Unit square: Unstructured triangular grid

Next, we consider the problem given in [8]. In that paper, a face-based agglomeration
process, called topology algorithm, was introduced. Structured grids with bilinear quadrilateral
elements were used for discretization of the unit square domain (Figure 3). Four different grid
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Grid # 1 2 3 4
# fine elements ref[8] 400 900 1600 2500

our solver 400 900 1600 2500
# coarse elements ref[8] 118 253 438 673

our solver 121 256 441 676
# fine dofs ref[8] 882 1922 3362 5202

our solver 882 1922 3362 5202
# coarse dofs ref[8] 314 624 1034 1544

our solver 280 570 960 1450
# iterations ref[8] 9 9 9 9

our solver 7-8 7-8 7-8 7-8

Table II. Unit square with structured rectangular grid: two-level AMG

sizes were considered with the relative residual stopping criterion set at 1e-6. The solution
was obtained using two-level V(1,1) AMGe cycles. Table II gives a comparison between the
results in [8] and the proposed solver. There is a very good agreement between their results
and ours, both in terms of coarsening and convergence rate. This comparison establishes the
validity of the proposed node-based agglomeration process. It is important to stress that the
node-based agglomeration process achieves the same performance without having to generate
extra information about faces as required by the face-based agglomeration algorithm.

The next study deals with the problem considered in [4]. For the purpose of this study,
the relative residual reduction stopping criterion is taken to be 1e-12, same with the one used
in [4]. The problem considered involves the application of a multi-level AMG algorithm for
a structured rectangular grid on a unit square for three different individual cell sizes. Both
V(1,1) and V(3,3) cycles are used along with two different levels for our solver. A variety of
performance parameters, grid complexity, c(G), operator complexity, c(A), and convergence
factor are compared in table III. It is evident from the comparisons that our solver exhibits
very good performance. It is noted that as we increase the level of grids from 3 to 4 there is
no significant change in c(A) and c(G). In fact their values remain considerably lower than 2.
This is important since these complexities dictate the cost of each V cycle. Their small values
indicate that the nodal agglomeration coarsening process used is able to maintain good sparsity
both in the intergrid transfer operators and the coarse grid operators. Thus, the computation
of the V cycles in our algorithm is very efficient. Based on our numerical experiments, use of
three or four levels of grids is sufficient for obtaining the desired performance.

ref [4] our solver - 3 level our solver - 4 level
h c(A) c(G) ρ c(A) c(G) ρ V(3,3) ρ V(1,1) c(A) c(G) ρ V(3,3) ρ V(1,1)

1/32 2.61 1.69 0.21 1.38 1.39 0.072 0.22 1.42 1.43 0.14 0.28
1/64 2.69 1.68 0.22 1.37 1.35 0.079 0.22 1.37 1.38 0.16 0.29
1/128 2.75 1.68 0.23 1.33 1.33 0.084 0.22 1.36 1.35 0.17 0.29

Table III. Unit square with structured rectangular grid: multi-level AMG

Finally, we consider the robustness of our solver with respect to Poisson’s ratio. We consider
the same problem as above (i.e. plane strain on unit square) with h = 1/128 and Poisson’s
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ratio varying between 0.1 and 0.45. As pointed out earlier, in some of the MEMS structures
it is common to encounter beams with a Poisson’s ratio of 0.4 or greater. The asymptotic
convergence factor is plotted in Figure 4. It is found to remain less than 0.35 even for Poisson’s
ratio greater than 0.4.
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Figure 4. Unit square: Asymptotic convergence rate for different values of Poisson’s ratio

5.2. Cantilever beam

In this section, we consider the application of the proposed algorithm to a generic cantilever
geometry. Such structures are commonly encountered in MEMS devices. As a first example,we
consider the case study given in [7]. A cantilever beam as shown in Figure 5 is considered.
The length/height ratio (aspect ratio) is varied between 16:1 to 64:1. Note that as the aspect
ratio increases the matrix becomes more badly conditioned and poses more challenges to the
AMG algorithm. A relative residual stopping criterion of 1e-6 is used for the iterative solution.
The cantilever beam is discretized using bilinear square elements. Analysis is done for plane
stress with Poisson’s ratio of 4/7. Both two-level and multi-level multigrid are used. For the
purpose of even comparison with [7], V(0,1) cycles are used. Summarized in Tables IV and V
is a comparison for two-level multigrid and multilevel multigrid. In these tables, GMG stands
for geometric multigrid while AMGe stands for AMGe interpolation procedures applied using
geometric coarsening strategies. From the results in the tables it becomes evident that the node-
based agglomeration process in conjunction with AMGe interpolation results in very accurate
solution. In fact, even for this structured grid, the performance of our solver is superior to
GMG. Finally, we note that a much better performance can be achieved if V(1,1) or V(3,3)
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Figure 5. Cantilever problem

cycles are used instead.

Length/height GMG AMGe Our solver
16 0.46 0.49 0.32
32 0.53 0.45 0.35
64 0.67 0.39 0.38

Table IV. Cantilever: Asymptotic convergence factors for two-level multigrid

Length/height GMG AMGe Our solver: three-level Our solver: four-level
16 0.77 0.58 0.34 0.46
32 0.75 0.51 0.37 0.45
64 0.67 0.39 0.40 0.48

Table V. Cantilever : Asymptotic convergence factors for multi-level multigrid

Next we consider the application of our algorithm to the solution to the problem for aspect
ratios of 128:1 and 375:1 in the cantilever beam, representative of those encountered in MEMS
devices. For such large aspect ratios, the resulting stiffness matrix is not positive definite and
is very ill-conditioned. V(3,3) cycles and three-level multigrid are used. Table VI summarizes
the results. We note that the operator and grid complexity are less than 2, independently of
the aspect ratio. Also, the convergence rate remains very good (< 0.3) even at an aspect ratio
of 375:1.

6. Practical application to an RF MEMS switch

In this section, we describe the application of the proposed solver pertinent to the modeling
of a MEMS device, namely, a simply supported RF MEMS capacitive switch [11]. The cross-
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Length/height ρ c(A) c(G)
128 0.1950 1.73 1.65
375 0.2430 1.73 1.65

Table VI. Thin cantilever beams in MEMS

sectional geometry involved in the modeling is depicted in Figure 6. It consists of a Au beam,
which is used as the top movable electrode, attached to metal posts on either side. The beam is
placed over a center ground conductor, which remains fixed and serves as the ground electrode
for the capacitive switch. A Si3N4 layer is placed on top of this electrode. The ground electrode
and supporting metal posts for the top electrode are placed over a SiO2 layer, which sits on
top of a silicon substrate.

The dimensions of the structure are as follows: the length of the top electrode, L, is 300µm,
its thickness, t, is 0.8µm, and its width, b, is 80 µm. The width, W , of the lower electrode is
100 µm, and its thickness, te, is 0.8µm. The distance between the bottom of the top electrode
and the silicon nitride layer is 3 µm. The thickness of the Si3N4 layer, td, is 0.15 µm, while the
thickness of the SiO2 layer, tox, is 0.4 µm. The Si3N4 and SiO2 dielectric layers have relative
dielectric constants of 7.6 and 3.9 respectively. For the Au beam, the Young’s modulus, E, is
80 GPa and Poisson’s ratio ν is 0.42.

One of the tasks in the MEMS design process involves characterization of the electro-
mechanical behavior of the switch for different voltages. For a given applied voltage, an
electrostatic force acts on the top, simply supported beam, due to which the beam bends
by a certain amount. The deflection of the center of the beam versus the applied voltage is
usually a metric of interest to the assessment of the performance of the capacitive switch.

Electro-mechanical analysis is done using a relaxation algorithm as follows:
repeat

1. Do mechanical analysis (on the undeformed geometry) to compute structural
displacements

2. Update the geometry of the movable electrode using computed displacements
3. Compute the electric field by electrostatic analysis (deformed geometry)
4. Compute electrostatic forces on the movable membrane in the deformed configuration
5. Transform the electrostatic forces to the original undeformed configuration

until an equilibrium state is reached.

Thus, two separate analyses need to be performed : mechanical (elasticity) analysis, which is
typically done using a finite element solver[2] and an electrostatic analysis, which is typically
done using either a boundary element solver [2] or a finite element solver [12]. In this paper we
are concerned with the finite element-based mechanical analysis. In terms of numerical linear
algebra, during each step of the relaxation, we are solving a linear system of equations of the
form,

Amxm = b (23)

where Am is a stiffness matrix associated with the top slender electrode, xm is its displacement
at the mth relaxation step and bm is the right-hand side at the mth step. The stiffness matrix,
Am, does not change at each step. So essentially, at each step, we can update xm as follows,

xm+1 = xm + A−1
m bm (24)

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
Prepared using cnmauth.cls



16 P.S.SUMANT, A.C.CANGELLARIS AND N.R.ALURU

Also, xm at the previous iteration step forms a good initial guess for xm+1 at the next step.

So our proposed node-based AMGe solver can be very efficiently used for this process. Since
the grid does not change, the set up phase is carried out only once. Once the intergrid transfer
operators and the coarse grid operators are ready, they are used in the V cycles in conjunction
with a good initial guess to obtain very fast convergence.

For the RF MEMS capacitive switch under consideration, it is noted that the aspect ratio
is 375:1 and the Poisson’s ratio is 0.42. Since the membrane width (80 µm) is much larger
than its thickness (0.8 µm), we perform a 2D analysis using plain strain formulation. Thus the
problem poses several challenges for its solution. Our proposed solver was applied to the above
problem for different voltages of values ranging between 0 V and 19 V. For each voltage, the
aforementioned relaxation procedure is performed to obtain the center deflection of the top
electrode. Results are compared with those obtained using ANSYS in Figure 7. There is a very
good agreement in the results. Note that we employ a three-level AMG with V(3,3) cycles and
1e-6 as the stopping criterion. The grid and operator summary can be found in Table VII. The
number of degrees of freedom on the coarsest grid is almost 1/7th of that on the finest grid.
It is noted that for the first relaxation step we employ twenty cycles and reduce the number
of V cycles at each subsequent relaxation step by 2. We observe that this process yields the
same convergence with the one where twenty cycles are used for all relaxation steps. Thus, we
conclude that using the previous solution as initial guess for the next step greatly accelerates
convergence and reduces significantly the overall cost of the solution process. In fact, we note
that if the center deflection versus applied voltage is to be obtained, a very efficient way to do
it would be to begin with low voltage, and gradually increase it until the maximum desired
voltage is reached. For each voltage, we can use the solution obtained from the previous lower
voltage as an initial guess. Furthermore, we note that the same multigrid operators are used for
each voltage. This way the overall design characterization task is carried out very efficiently.

Figure 6. RF MEMS switch
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Figure 7. Center deflection : comparison between ANSYS and the proposed nodal AMGe solver

Grid nnz(A) # elements # nodes
0 312052 8000 10005
1 120048 3003 4004
2 109944 1002 2502
3 75832 501 1500

Table VII. RF MEMS switch : Grid and Operator summary

7. SUMMARY

We have described the development of a nodal agglomeration-based AMGe solver for the
accurate analysis of thin body elasticity. In particular, we have proposed a node-based
agglomeration process that allows for a systematic application of the AMGe interpolation
procedure described in [7]. The proposed agglomeration process treats the degrees of freedom
at a given node in a block fashion. Thus, the coarsening in this elasticity problem is done
as if it were done on a scalar problem. This ensures that non-physical coarse grids are not
created. Also, the agglomeration process uses only the basic information available from a
mesh generator. Its node-centric nature makes it very aggressive in terms of coarsening. We
have also demonstrated that use of a complete and consistent formulation for a finite element
discretization ensures conservation of rigid body modes if the AMGe interpolation procedure
is applied in a block fashion.

Copyright c© 2000 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2000; 00:1–6
Prepared using cnmauth.cls



18 P.S.SUMANT, A.C.CANGELLARIS AND N.R.ALURU

Several case studies are taken up to demonstrate the efficiency and accuracy of our proposed
solver. In particular, we have demonstrated that operator and grid complexities c(A) and c(G)
are maintained low (< 2) while achieving good convergence rates of less than 0.3 for most
problems. We have also demonstrated that the proposed solver delivers convergence rates
of less than 0.35 even for Poisson’s ratios > 0.4. For most cases considered, using two or
three coarse grids was found to work very well. If two coarse grids are used, the number of
degrees of freedom is reduced by approximately a factor of seven. Finally, we have presented
an application of the proposed nodal agglomeration-based AMGe solver in the computer-aided
design characterization of an RF MEMS capacitive switch.
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